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Human pharmacokinetics data indicate that i.v. ascorbic acid
(ascorbate) in pharmacologic concentrations could have an unan-
ticipated role in cancer treatment. Our goals here were to test
whether ascorbate killed cancer cells selectively, and if so, to
determine mechanisms, using clinically relevant conditions. Cell
death in 10 cancer and 4 normal cell types was measured by using
1-h exposures. Normal cells were unaffected by 20 mM ascorbate,
whereas 5 cancer lines had ECsp values of <4 mM, a concentration
easily achievable i.v. Human lymphoma cells were studied in detail
because of their sensitivity to ascorbate (ECso of 0.5 mM) and
suitability for addressing mechanisms. Extracellular but not intra-
cellular ascorbate mediated cell death, which occurred by apopto-
sis and pyknosis/necrosis. Cell death was independent of metal
chelatars and ahsolutely dependent an Ha05 farmation. Cell death
from H;0, added to cells was identical to that found when H,0;
was generated by ascorbate treatment. H;O: generation was
dependent on ascorbate concentration, incubation time, and the
presence of 0.5 10% scrum, and displayed a lincar relationship
with ascorbate radical formation. Although ascorbate addition to
medium generated H;0;, ascorbate addition to blood generated
no detectable H;0; and only trace detectable ascorbate radical.
Taken loyether, these dala inditale thdl ascorbale gt woncentra-
tions achieved only by i.v. administration may be a pro-drug for
formation of H;0,, and that blood can be a delivery system of the
pro-drug to tissues. These findings give plausibility to i.v. ascorbic
acid in cancer treatment, and have unexpected implications for
treatment of infections where H;0; may be beneficial.

cell death | ascorbate radical

Ascurhic acid (vitamin C, ascorbate) has a controversial history
in cancer treatment (1), Obscrvational reports described
ascorbate, given in pharmacologic doses of 10 g daily. as effective
in treating some cancers and in improving patient well-being (2-4).
Subscquently, the same dose had no effect on patient well-being
and survival in two double-blind placebo-controlled trials, and
ascorbatc was discarded as a trcatment modality (5. 6). Reeent
clinical cvidence, however, indicates that the role of ascorbate in
cancer treatment should be examined ancew (7). The originally
reported observational studies used iv. and oral ascorbate, but the
subsequent double-blind placebo-controlled studies used only oral
ascorbate. It was not recognized that the route of ascorbate
administration might produce large differences in plasma concen-
trations. Recent pharmacokinetics studies in men and women show
that 10 g of ascorbate given Lv. 1 expected to produce plasma
concentrations of nearly 6 mM, which are >25-fold higher than
those concentrations from the same oral dose (7-9). As much as a
70-fold difference in plasma concentrations is expected between
oral and i.v. administration, depending on dose. Despite inconsis-
tencies, some in virre studies showed that ascorbate killed cancer
cells, although mechanisms and physiologic relevance were unclear
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(10-12). Complementary and alternative medicine practitioners
worldwide currently use ascorbate Lv. in some patients, in part
because there is no apparent harm (13-15).

Given its potential safety and benefit, there is merit in investi-
gating i.v. ascorbate as a possible novel cancer treatment modality,
It is essential first to learn whether ascorbate acts as an anticancer
agent in virro, and if so, by what mechanisms. OQur goals were to
address the following: Does ascorbate in pharmacologic concen-
trations kill cancer cells, but not normal cells, using conditions that
mimic i.v. use and a clinically relevant time course? Is action
dependent on extracellular ascorbate, intracellular ascorbate, or
both? If cffective. what are the mechanisms? Can ascorbate be
delivered to tissues without harm? Are there implications for other
diseases?

We studied ascorbate at| physiologic (0.1 mM) and pharmaco-
logic (0.3-20 mM) concentrations using 1-h incubations to mimic
clinical i.v. use (7-9). The data showed that pharmacologic con-
centrations of ascorbate killed cancer but not normal cells, that cell
death was dependent only| on extracellular but not intracellular
ascorbate, and that Killing was dependent on extracellular hydrogen
peroxide (H-O:) formation with ascorbate radical as an interme-
diate. Ascorbate genciated | detectable levels of HLOs in eatiacel-
lular medium in the presence of trace serum protein but not in
whole blood. The findings indicate that ascorbate at pharmacologic
concentrations in blood may be a pro-drug for H>O- delivery to
tissucs, with major therapeutic implications.

Materials and Methods

Cells and Reagents. Human Burkitt’s lymphoma cells (JL.P-119)
were obtained and studied as described in ref. 16, Other cell lines
were purchased from American Type Culture Collection and were
grown at 37°C in 5% CO,/95% air in recommended media
containing 10% FBS (GIBCO). Human lymphocytes and mono-
cytes were isolated by apheresis (17) from at least six healthy
subjects and used immediately. Ascorbic acid was always buffered
to pH 7.0 with sodium hydroxide and prepared immediately before
use. Dehydroascorbic acid was freshly prepared (18). 3-(4.5-
Dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide (MTT)
was purchased from Molecular Probes and bacto-agar was from
Difco. Other reagents, enzymes, and media were from general
commercial sources.

Cell Death. Nuclcar staining with Hoechst 33342 (Hoechst Phar-
maccuticals) and propidium jodide (PI) was used for morphological

Abbreviations: MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; P,
propidium iodide.
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assessment of apoptosis, necrosis, and pyknosis/necrosis by fluo-
rescence microscopy as described in ref. 19. Briefly, 2.5 X 109 cells
per mlwere incubated with ascorbate or H-Ox for 1 h. washed with
PBS. and suspended in fresh media. After 18-22 h, at least 200 eells
were stained with Hoechst /P and visualized under fluorescence
MICTOSCOpY.

MTT was nsed as a screening assay and performed as deseribed
in ref. 20. Cells in 96-well plates were treated with ascorbate (0.1-20
mM) for 1 h, washed, and incubated for an additional 24 h. The
ECsy value was the concentration that reduced survival by 50%.

For colony formation on soft agar plates, cells were treated with
5 mM ascorbate for | h, washed, and plated. A two-laver agar
system was used, and colonies were visualized after 10-14 days (21).

To determine the effects of red blood cells on ascorbate-induced
cell death, red blood cclls were preparcd by centrifugation of
heparinized human blood at 500 X g for 30 min. Human Burkitt’s
lymphoma cells at 2.5 X 107 cells per ml were mixed with red blood
cells, 25% or 50% hematocerit, Cell mixtures were treated with 2
mM ascorbate for 1 h, Lymphoma cells were recovered by using
Vacutainer CPT tubes (Becton Dickinson) according to the man-
ufacturer’s instructions. After washing, lvmphoma cells were re-
turned to fresh medium and assessed after 18 h by nuclear staining
as above.

Quantitative Procedures, Catalasc activity was determined by using
Amplex Red (Molecular Probes) (22). Glutathione was detected by
using 3.5'-dithio his-2-nitrobenzoic acid, and glutathione peroxi-
dase activity was measured by a coupled reaction with glutathione
reductase (Cayman Chemical, Ann Arbor, MI), according to the
manufacturer’s instructions.

Ascorbate radical in culture media and blood was detected by
using clectron paramagnetic resonance (23, 24). Spectrometer (E9
series, Varian) settings were as follows: microwave power, 20 mW:
modulation amplitude, 1.0 G: time constant, (.25 s; scan range, 4 X
10 G; and scan time, 4 min. Radical quantitation was performed by
using 3-carboxyproxyl as a standard (23).

Because ascorbate interferes with most peroxidase-based detec-
tion methods. Ha0» was measured by using a Clark-type oxyeen
clectrode (5/6 Oxygraph, Gilson Medical Electronics, Middleton,
WI). Oxygen evolution was measured upon introduction of cata-
lase: 2H>0-> — 2H-0 + O-, Calibration was performed with freshly
prepared solutions of H2O- (10200 M) (25).

Ascorbate was measured by HPLC with coulometric ¢lectro-
chemical detection (26). Protein was determined by using bicin-
choninic acid (27). Cell volumes were determined by using a
Coulter Multisizer IT cell counter. Intracellular ascorbate concen
trations were calculated by converting cell protein to a measured
intracellular volume (18).

Results

Effects of Ascorbic Acid in Pharmacologic Concentrations on Survival
of Tumor and Normal Cells. We first investigated whether ascorbate
in pharmacologic concentrations sclectively affected the survival of
cancer eells by studying nine cancer cell lines, four normal cell types,
and clinically relevant conditions. Clinical pharmacokinetics anal-
yses show that pharmacologic concentrations of plasma ascorbate,
from 0.3 to 15 mM, are achievable only from i.v. administration (7).
These concentrations are cleared within hours by renal filtration
and excretion. In contrast, plasma ascorbate concentrations from
maximum possible oral doses cannot exceed 0.22 mM because of
limited intestinal absorption, which is bypassed with iv. adminis-
tration (7-9). To mimic potential clinical Lv. use, tested cells were
incubated for 1 h with cither pharmacologic ascorbate concentra-
tions ((.3-20 mM) or a high physiologic concentration (0.1 mM) as
control. Once ascorbate was removed, cell survival was determined
by nuclear staining or MTT after 24 h (Fig. 1.4). For five of the nine
cancer cell lines, ascorbate concentrations causing a 509 decrcase
in cell survival (ECso values) were less than 5 mM, a concentration
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Fig. 1. Effects of pharmacologic ascorbic acid concentrations on cancer and

normal cells. Concentrations in this and all figures indicate final concentrations.
(A) ECs values of ascorbate in human and mouse cancer cells and normal human
cells. All cells were treated with ascorbate for 1 h, washed, and recultured without
ascorbate. ECsp values were determined 18-22 h later by using Hoechst /Pl for
human Burkitt's lyrmphoma cells JLP119), MTT and Hoechst /Pl for normal lym-
phocytes and monocytes, and MTT for all other cells (see Materials and Methods).
(B) Colony formation of cancer cells in soft agar after a 1-h treatment with 5 mM
ascorbate. Surviving fraction, expressed in log scale, indicates the number of
treated colonies compared with matched untreated control cells.

casily achicvable from i.v. infusion (7). All tested normal cells were
insensitive to 20 mM ascorbate.

Colony formation assays were used as an additional means to
determine cell survival (21). Four cancer cell lines were incubated
with 5 mM ascorbate or untreated media for 1 h. Cells were diluted
and plated and growth assessed after 14 days (Fig. 18). All four
untreated cell lines grew in soft agar, whereas three of four exposced
to ascorbate displaved at least 99% growth inhibition.

Effects of Ascorbic Acid on Death of Human Lymphoma Cells. Hum:an
lymphoma cells (JLP-119) were studied in detail to determine the
ceffects of ascorbate on cell death. Lymphoma cells were selected
because of their sensitivity tp ascorbate (Fig. 1A4), the suitability of
these cells for nuclear staining to characterize the mode of cell
death (16, 19, 28), and the report of a positive clinical response of
lymphoma to iv. ascorbate (14) (unpublished work). Cells were
incubated for | h with 0.1-5 mM ascorbate and washed, and
Hocchst/PI nuclear staining was performed 18 h later to determine
the amount and type of cell death (Fig. 21). Ascorbate induced
concentration-dependent| edll death, which was nearly 1009 at 2
mM. As ascorbate concentration increased, the pattern of death
Chianged lrom apoptosis 10 pyknosis/neciosis, a pattcin suggestive
of H>O->-mediated cell death (19). We determined the time nece-
essary for cell death after exposure to 2 mM ascorbate for | h (Fig.

28). Apoptosis occurred by

6 h after exposure, and cell death by

pyknosis was =90% at 14 h after exposure. In contrast to lymphoma

cells, there was little or n
monocytes by ascorbate (Fig

The roles of intracellular v
cell death were examined, us
dehydroascorbic acid. Ascor
sodium-dependent transpor
transported into cells by gluc

killing of normal lymphocytes and
. 2C).

ersus extracellular ascorbate in causing
ing ascorbate and its oxidized product
bate is transported into cells as such by
ers, whereas dehydroascorbic acid is
bse transporters and then immediately

reduced internally to ascorbate (29). By using cither external

ascorbate or external dehyd

roascorbic acid, lymphoma cells were

loaded to equal internal con¢entrations of ascorbate over 1 h (data
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Fig. 2. Fffects of ascorbic acid on human Burkitt’s lymphoma cells. Cells were
treated for 1 h, washed, and recultured without ascorbate. Amounts and types of
cell death were determined 18-22 h later by nudear staining with Hoechst /PI.
Types of cell death: necrosis (black), pyknosis/necrosis (gray), early apoptosis
(blue), and late apoptosis (red). (4) Amount and type of cell death as a function
of external ascorbate concentration. (B) Time course and type of cell death after
1 h external ascorbate (2 mM). (C) Cell death as a function of external ascorbate
concentration in human Burkitt's lymphoma cells (¢ ), normal lymphocytes (m),
and normal monocytes (a). (D) Cell death as a function of external ascorbate (#)
or dehydroascorbicacid (1) concentrations (1-h incubation). (E) Type and amount
of celldeathwith 2 mM ascorbate treatment, in cells previously loaded tocontain
3 mM ascorbate (right), compared with unloaded cells (left).

not shown). Despite similar intracellular ascorbate concentrations
under both conditions, cells died only when ascorbate was present
externally (Fig. 2D).

13606 | www.pnas.org/cgi/doi/10.1073/pnas.0506390102

Similar to most cultured| cells, lymphoma cells contain no ascor-
bate unless the vitamin is added to the extracellular medium (data
not shown) (17). In contrast. excepting red blood cells. all cells in
vivo or acutely isolated contain ascorbate, usually in millimolar
concentrations. We investigated whether the prior presence of
intracellular ascorbate affected death mediated by extracellular
ascorhate 1 ymphoma cells were preloaded with physiologic can-
centrations of ascorbate 10 produce millimolar intracellular con-
centrations, similar to normal lymphocytes (8, 9). Their response to
external ascorbate was ¢compared with unloaded cells (Fig. 2E).
Whether or not intracellular ascorbate was preloaded, extracellular
ascorbate induced the same amount and type of death. Taken
together, the data in Fig, 2 4-£ indicate that extracellular ascorbate
in pharmacologic cunccntrliians mediates death of lvmphomacells
by apoptosis and pyknosis/ncerosis, independently of intraccllular
ascorbate. | ‘

Mechanism of Ascorbate-Mediated Cell Killing. To determine the
mechanism of uwnrl.mlc—‘q:|1.'diau:d lymphoma cell death, we tested
the effects of the membrané-impermeant H-O>-scavenger catalase,
the membrane-permeant H-Os-scavenger tetrakis (4-benzoic acid)
meso-substituted manganoporphyrin (Mn'TBAP) (30), and the
thiol-reducing agent Tris (2-carboxyethyl ) phosphine hydrochloride
(TCEP) (31). We also tested whether adventitious transition metals
were responsible, by using the membrane impermeant chelator
dicthylenctriamine-pentaacetic acid (DTPA) (32) and the mem-
brane permeant chelator |N.N-bis( 2-hvdroxybenzyl)ethylenedia-
mine-V,N'-diacetic acid (HBED) (33-35) (Fig. 34). The H-0-
scavengers were cnn1pl¢L;liy protective, identifying H.O» as the
cffector species mcdi:itiﬂg pharmacologic ascorbate-induced cell
death. The effect of ascorbate was not due to chelatable, trace
redox-active metals, bDL't 1s¢ the two chelators had no effect on
preventing death. Superoxide dismutase was not protective (data
not shown), consistent with|its action in producing but not degrad-

Because these data implicated H>O- in cell Killing, we added
H-0- to lymphoma cells ind studied death patterns using nuclear
staining (19. 28). The death patterns found with exogenous Ha0
exposure were similar to those found with ascorbate. For both
ascorbate and H-O,, death| changed from apoptosis to pyknosis/
necrosis as concentrationy increased (Fig. 38).

Agaspecific test of ascarbate action, the amount of H-O- formed
in the presence of ascorbate was measured by using an oxygen
clectrode. We compared the effects on cell death of H-O- amounts
formed in the presence (l' iscorbate to effects from exogenously
added H-0-. H-O- generated by ascorbate oxidation and exog
cnously added H-O- praduced cell death curves that were indis-
tinguishable (Fig. 3C).

Sensitivity to direct ex
cells compared with nor

(Fig. 3D), consistent with!ﬂ

sure 10 H-O- was greater in lvmphoma
lymphocytes and normal monocytes
cytotoxicity pattern found above with
pharmacologic ascorbate exposure. Taken together, these data are
consistent with the conclugion that extracellular ascorbate induced
cell death by formation of| HLOs.

We investigated whether activities of intracellular H>O»-removal
systems correlated with as¢arbate-mediated cell death, for all cells
studied. There was no assotintion between the ECsg for ascorbate-
mediated cell death and liptracellular glutathione concentrations,
catalase activity, or glutgthione peroxidase activity (data not
shown). I

Mediators and Inhibitors o
generated by ascorbate we
or in medium without cells
an oxveen clectrode as aboy

time, ascorbate concentratio

of serum in media (Fig. 4 4
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20, Generation. H-0O- concentrations
similar with tumor cells, normal cells,
ata not shown). as measured by using
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,and the presence of trace amounts
and B).
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Fig. 3.  Extracellular ascorbate kills human Burkitt's lymphoma cells by gener-

ating H;0;. Cell death determined and symbolized as in Fig. 2: H,0, measured by
oxygen electrode (see Materials and Methods). (A) Effects of reactive oxygen
speciesquenchers/scavengers, reducing agent, and metalchelators on ascorbate-
mediated cell death. The following (final concentrations) were preincubated
with cells for 30 min before exposure to ascorbate (2 mM): catalase (100 na/mi);
tetrakis {4-benzoic acid) meso-substituted manganoporphyrin (MnTBAP) (100
uM); Tris (2-carboxyethyl) phosphine hydrochloride (TCEP) (500 M); diethylene-
triamine-pentaacetic acid (DTPA) (1 mM): and N,N'-bis(2-hydroxybenzyl)ethyl-
enediamine-N,N"-diacetic acid (HBED) (50 1M). (B) Type and amount of cell death
as function of added H.0; (final concentrations). (C) Cell death as a function of
added H;O; for 1 h (#) or mean H,0, concentration generated by 0.2-2 mM
asctorbale during a 1-hincubation (). (D) Cell death in hurnign Burkitl's lyrer-
phoma cells (# ), normal lymphocytes (), and normal monocytes (A) as function
of added H-0; (final concentrations).

action in forming H-0, is that the first step is ascorbate oxidation
to its radical. We measured 1,05 concentration as a function of
ascorbate radical concentration and found a lincar relationship
(Fig. 4C). These data imply that ascorbate radical is a surrogate
marker for H>O» formation.

For ascorbate to be useful clinically, it should increase the
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Fig. 4. Enhancing factors fqr lascorbate-mediated H,0, generation in cell
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tion as function of time and astarbate concentration: 0.2 mM (), 0.5 mM (a),
TmM (), and2 mM (¢). (B f- 70> formation as a function of the percentage
of FBS for 1h (2 mM ascorbate). (C) H>O; formation as a function of ascorbate
radical formation (0.2-2 mM gs¢orbate, 1-h incubation),

steady-state concentration of H-O- in the extracellular milicu but
not in blood. We predicted|that steady-state concentrations of H-O»
gencrated by ascorbate gnidation would be undetectable in blood
for several reasons. First, |iff any ascorbate radical is generated in
blood, only very low condeptrations are expected, and such con-
centrations should be lower than that needed to form detectable
steady-state concentrations of H-0- (37). Second, whatever H-O»
is generated should be r¢moved by glutathione peroxidase and
catalase within red blood|cells. because H-0s is membrane per-
meable (38-41). These predictions were explored in the following
experiments. First, ascorbt¢ (010 mM) was added to whole blood
and to medium, and ascofHate Tadim! was measured by electron
paramagnetic resonance. Ascorbate radical in whole blood was not
detectable when ascorbaty Concentrations were <23 mM and was
present at minimal concerirations thereafter. In contrast, there was
robust ascorbate radical| generation in medium, a surrogate for
extracellular fluid (Fig. 34))| Sceond, as dircct tests, H-On coneen-
trations were measured under the following conditions: Tn whole
blood in the presence of Yirying concentrations of ascorbate, in
whole blood after exogendqus H-0- addition, and in medium with
varyving concentrations of ascorbate (Fig. 5B). H-0- was not
detected in whole blood | yinder either condition, even in the
presence of far higher added concentrations than could be gener-

e = B~ T
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Fig. 5. Human blood inhibits H;0; and ascorbate radical generation from
ascorbate. Ascorbate radical was measured by electron paramagnetic reso-
nance, H0; was measured by oxygen electrode, and cell death was measured
and displayed as 1n Fig. 2. (A} Ascorbate radical tormation as tunction ot
ascorbate concentrations added to blood (#) or medium (A). (B) H20; gen-
erated by ascorbate concentrations added to blood (#) or medium (a) (1-h
incubation), and H,0; measured in blood immediately after the addition of
indicated concentrations (). (€) Human Burkitt’s lymphoma cell death in the
presence or absence of red blood cells (RBC) at 25% or 50% hematocrit (HCT)
(2 mM ascorbate, 1-h treatment).

ated by ascorbate oxidation, Control formation of 110> as a
function of ascorbate concentration in medium proceeded as
expected. These data indicate that even if ascorbate radical was
formed in blood and H,O- was generated, it would be immediately
seavenged to coneentrations below deteetion limits. Based on these
data, an additional functional experiment was conducted, based on
the prediction that blood would protect tumor cells from ascorbate-
mediated cell death. Lymphoma cells were incubated in the pres-
ence or absence of red blood cells, with and without added
ascorbate. Red blood cells completely protected lymphoma cells
from ascorbate-mediated cell death (Fig. 5C). Taken together,
these data indicate that ascorbate cannot generate sustainable
H-0O- concentrations in whole blood. The data are consistent with
the hypothesis that ascorbate in pharmacologic concentrations is a
pro-drug for H-O> generation in the extracellular milicu but not in
blood.

Discussion
Our data show that ascorbic acid selectively killed cancer but not
normal cells, using concentrations that could only be achieved by i.v.
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concentrations should be cffective, independent of intracellular
ascorbate concentrations. This was what was observed here. The
experiments here provide a cohesive explanation for ascorbate
action in generating H>0» outside cells, without H>O» accumula-
tion in blood, leading to the conclusion that ascorbate at pharma-
cologic concentrations in blood is a pro-drug for H-O» delivery to
tissues.

We observed that H,Os generation was independent of metal
chelators and dependent on at least 0.5% extracellular protein. The
rcﬂpomihlc proteins were between 10 and 30 kDa (data not shown).
It is rcasonable that cxtraccllular milicu contains thesc proteins,
given that extracellular milicu protein is as much as 209% of serum
protein, and favors lower-molecular-weight proteins (50). Although
identitics of the proteins responsible are unknown, we postulate
that they may have redox-active metal centers, While chelators may
marginally affect these metals, they could participate in the oxida-
tion of ascorbate when it is at pharmacologic concentrations, with
subscquent formation of superoxide and H-O-» (34). 1t is also
possible that in vivo, cell membrances and their assoclated proteins
could harbor metals accessible to extracellular fluid and could react
similarly. In cither case, ascorbate, an clectron-donor in such
reactions, ironically initiates pro-oxidant chemistry and H>O- for-
mation (34, 51).

It is unknown why ascorbate, via H20z, Killed some cancer cells
but not normal cells. There was no correlation with ascorbate-
induced cell death and glutathione, catalase activity. or glutathione
peroxidase activity. The data here showed that ascorbate initiated
H->0O- formation extracellularly, but H-O- targets could be either
intracellular or extracellular, because H205 is membrane permeant
(38, 532). For example. extracellular Ho0s might target membrane
lipids, forming hydroperoxides or reactive intermediates that are
quenched or repaired in normal cells but not in sensitive cancer
cells. In sensitive but not resistant cancer cells, intracellular H-O
could target DNA, DNA repair proteins, or mitochondria becaus
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of diminished superoxide dismutase activity (53). New insights may
follow from future studi¢s of a very broad range of tumor cells or
from microarray analysis of resistant and sensitive cells derived
from the same genetic i

H-0s, as the product of pharmacologic ascorbate concentrations,
has potential therapeutic uses in addition to cancer treatment,
especially in infeetions. Ha0)s is 2 potent mammalian antimicrobinl
defense mechanism (54)) Neutrophils gencerate H>O» from super-
oxide, in turn formed byl NADPH oxidasc-catalyzed reduction of
molecular oxygen. There may be particular therapeutic application
in patients with chronie granulomatous discase who have dimin-
ished superoxide production (S.T). Old obscrvational animal exper-
iments, although uncontrolled, suggest that i.v. ascorbate is effective
in some viral infections (36, 57). This finding is also consistent with
in vitro experiments, in which H>O: is toxic to hepatitis C (58). Use
of ascorbate as an HgOg?dcli\r'LLry system against sensitive patho-
gens, viral or bacterial, has substantial clinical implications that
deserve rapid exploration.

To proceed elinically in potential treatment of infeetious discases
and cancer, clear s.lh_ty dox.umﬁmdnon of iv. ascorbate adminis-
tration is necessary. Mm’* than 100 patients have been described.
presumably without glucose-6-phosphate dehydrogenase defi-
cicney, who reecived 10 E_or more of iLy. ascorbatc with no reported
adverse effects other lh‘m tumor lysis (3, 4. 15, 59). However, these
descriptions lack formal |safety documentation. Complementary
and alternative medicing practitioners worldwide currently use
ascun bate Ly, indoses as lugll ax 70 g uver several hows (14, 15, 59).
Because i.v. ascorbate is easily available to people who seek it, a
phase 1 safety trial in patients w‘[h advanced cancer is justified and
underway.
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